# DD\$B!]Dj5A\$N@bL@(J

\$B9=!!!!J8(J
...
\$B%\$%s%i%\$%sMWAG(J, \$B%V%m%C%/!]%l%Y%kMWAG(J DL

\$B!!(JDD\$BMWAG\$O!"(J \$BDj5A%j%9%H(J\$B\$N(J\$BMQ8l(J\$B\$N(J\$BDj5A(J\$B\$rDs6!\$7\$^\$9!#(J DD\$B\$NJD\$8%?%0\$OA*\$Y\$^\$9\$,!"(J style sheets\$B\$G\$N%P%0\$N\$"\$k%V%i%&%6\$b\$"\$j\$=\$N;HMQ\$GKI\$2\$^\$9!#(J

\$B!!(JDD\$B\$O!"(J P\$B!&(J H2\$B!&(J TABLE\$B\$=\$7\$F(JDL\$B\$H\$\$\$C\$?(J\$B%V%m%C%/!]%l%Y%kMWAG(J\$B\$rFbMF\$H\$7\$F\$H\$l\$^\$9!#Dj5A%j%9%H\$O0J2<\$NNc\$NMM\$KF~\$l;R\$O\$G\$-\$^\$9!'(J

``````<DL>

<DT><A NAME="spanning-tree">Spanning tree</A></DT>
<DD>
<P>
A spanning tree of a graph is a <A HREF="#tree">tree</A>
that contains all the vertices of the graph. There are two
main types of spanning trees:
</P>

<DL>
<DT>BFS spanning tree</DT>
<DD>
A spanning tree formed by a breadth-first search on the graph.
</DD>
<DT>DFS spanning tree</DT>
<DD>
A spanning tree formed by a depth-first search on the graph.
</DD>
</DL>
</DD>

<DT><A NAME=tree>Tree</A></DT>
<DD>
<P>
A tree is a connected, undirected graph without cycles.
</P>
</DD>

</DL>```
```

\$B!!(JDD\$BMWAG\$O!"0lHLE*\$K\$O(JDD\$B\$GDj5A\$5\$l\$?MQ8l\$rM?\$(\$k(JDT\$BMWAG\$,@h9T\$9\$Y\$-\$G\$9!#C10lDj5AMQ8l\$,!"\$=\$l\$KH<\$&B??t\$NDj5A\$r\$b\$D\$3\$H\$b\$"\$j!"C10lDj5A\$,B??t\$NMQ8l\$r\$b\$D\$3\$H\$b\$"\$j\$^\$9!#(J